metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(6-Hydroxy-2-{[2-(N-methylcarbamothiolyl)hydrazin-1-ylidene- $\kappa^2 N^1$,S]methyl}phenolato- κO^1)(triphenylphosphane- κP)nickel(II) chloride

Hana Bashir Shawish, M. Jamil Maah* and Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

Received 29 September 2010; accepted 1 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.177; data-to-parameter ratio = 17.7.

The deprotonated Schiff base ligand in the title salt, $[Ni(C_9H_{10}N_3O_2S)(C_{18}H_{15}P)]Cl$, functions as an *N*,*O*,*S*-chelating anion to the phosphine-coordinated nickel(II) atom, which exists in a distorted square-planar geometry. The hydroxy group forms an intramolecular $O-H\cdots O$ hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the *b* axis.

Related literature

The only report of this Schiff base is that of a study of its organotin derivatives; see: Swesi *et al.* (2007). For a related nickel Schiff-base adduct of triphenylphosphine, see: Shawish *et al.* (2010).

Experimental

Crystal data $[Ni(C_9H_{10}N_3O_2S)(C_{18}H_{15}P)]Cl$ $M_r = 580.69$ Monoclinic, $P2_1/n$ a = 15.7781 (15) Å

b = 10.6306 (10) Å c = 17.0020 (15) Å $\beta = 113.961 (1)^{\circ}$ $V = 2606.0 (4) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 1.02 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.785, \ T_{\max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.177$ S = 1.055971 reflections 338 parameters 3 restraints $\begin{array}{l} T=100 \ \mathrm{K} \\ 0.25 \ \times \ 0.15 \ \times \ 0.05 \ \mathrm{mm} \end{array}$

23696 measured reflections 5971 independent reflections 4428 reflections with $I > 2\sigma(I)$ $R_{int} = 0.096$

> H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 1.60 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -1.06 \text{ e } \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Ni1-N1	1.895 (3)	Ni1-P1	2.216 (1)
Ni1-O1	1.849 (2)	Ni1-S1	2.150 (1)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$02 - H2O \cdots O1$ $N2 - H2N \cdots Cl1$ $N3 - H3N \cdots Cl1^{i}$	0.84(5)	2.10 (4)	2.640 (4)	122 (4)
	0.86(4)	2.19 (4)	3.046 (3)	172 (5)
	0.86(4)	2.28 (4)	3.111 (3)	164 (5)

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS thanks the Libyan People's Bureau in Malaysia for a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5041).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shawish, H. B., Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, m1074.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Swesi, A. T., Farina, Y. & Baba, I. (2007). Sains Malaysiana, 36, 21-26.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m1366 [doi:10.1107/S1600536810039292]

(6-Hydroxy-2-{[2-(*N*-methylcarbamothiolyl)hydrazin-1-ylidene- $\kappa^2 N^1$,*S*]methyl}phenolato- κO^1)(triphenylphosphane- κP)nickel(II) chloride

H. B. Shawish, M. J. Maah and S. W. Ng

Experimental

2,3-Dihydroxybenzaldehyde 4-methylthiosemicarbazone hemihydrate (Swesi *et al.*, 2007) (0.22 g, 1 mmol), triphenylphosphine (0.26, 1 mmol) and nickel chloride (0.13 g, 1 mmol) were heated in a methanol/ethanol (50 ml) for an hour. The brown solution was then set aside for the growth of crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N-H 0.86 ± 0.01 and O-H 0.84 ± 0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Ni(C_9H_{10}N_3O_2S)(C_{18}H_{15}P)$ Cl at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Hydrogen-bonded chain motif.

(6-Hydroxy-2-{[2-(*N*-methylcarbamothiolyl)hydrazin-1-ylidene- $\kappa^2 N^1$,*S*]methyl}phenolato- κO^1)(triphenylphosphane- κP)nickel(II) chloride

F(000) = 1200

 $\theta = 2.3 - 27.6^{\circ}$

 $\mu = 1.02 \text{ mm}^{-1}$ T = 100 K

Triangular block, brown

 $0.25\times0.15\times0.05~mm$

 $D_{\rm x} = 1.480 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3978 reflections

Crystal data

[Ni(C₉H₁₀N₃O₂S)(C₁₈H₁₅P)]Cl $M_r = 580.69$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.7781 (15) Å b = 10.6306 (10) Å c = 17.0020 (15) Å $\beta = 113.961 (1)^\circ$ $V = 2606.0 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	5971 independent reflections
Radiation source: fine-focus sealed tube	4428 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.096$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 20$
$T_{\min} = 0.785, T_{\max} = 0.951$	$k = -13 \rightarrow 13$
23696 measured reflections	$l = -22 \rightarrow 21$
graphite ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.785, T_{max} = 0.951$ 23696 measured reflections	$R_{int} = 0.096$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -20 \rightarrow 20$ $k = -13 \rightarrow 13$ $l = -22 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.177$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1036P)^{2} + 0.1986P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5971 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
338 parameters	$\Delta \rho_{max} = 1.60 \text{ e } \text{\AA}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

Ni1	0.41946 (3)	0.54484 (4)	0.60995 (3)	0.01585 (16)
Cl1	0.66145 (6)	0.16147 (8)	0.61950 (6)	0.0205 (2)
S1	0.55028 (6)	0.62917 (8)	0.68921 (6)	0.0200 (2)
P1	0.34464 (6)	0.68668 (9)	0.65317 (6)	0.0162 (2)
01	0.30452 (17)	0.4812 (2)	0.53950 (17)	0.0194 (6)
02	0.12753 (18)	0.4272 (3)	0.45169 (19)	0.0268 (6)
H2O	0.159 (3)	0.481 (4)	0.488 (3)	0.047 (16)*
N1	0.4861 (2)	0.4179 (3)	0.58096 (19)	0.0170 (6)
N2	0.5828 (2)	0.4237 (3)	0.6177 (2)	0.0183 (6)
H2N	0.609 (3)	0.353 (3)	0.616 (4)	0.060 (18)*
N3	0.7127 (2)	0.5302 (3)	0.7092 (2)	0.0194 (7)
H3N	0.739 (3)	0.577 (4)	0.753 (2)	0.042 (15)*
C1	0.2882 (2)	0.3775 (3)	0.4925 (2)	0.0185 (7)
C2	0.1937 (2)	0.3465 (3)	0.4458 (2)	0.0194 (8)
C3	0.1667 (3)	0.2402 (4)	0.3963 (3)	0.0226 (8)
Н3	0.1027	0.2211	0.3665	0.027*
C4	0.2342 (3)	0.1597 (3)	0.3899 (3)	0.0230 (8)
H4	0.2156	0.0854	0.3561	0.028*
C5	0.3271 (3)	0.1876 (3)	0.4321 (2)	0.0208 (8)
H5	0.3723	0.1340	0.4262	0.025*
C6	0.3553 (2)	0.2978 (3)	0.4851 (2)	0.0178 (7)
C7	0.4516 (3)	0.3234 (3)	0.5293 (2)	0.0187 (7)
H7	0.4938	0.2674	0.5205	0.022*
C8	0.6223 (2)	0.5188 (3)	0.6721 (2)	0.0180 (7)
С9	0.7785 (3)	0.4427 (4)	0.6972 (3)	0.0231 (8)
H9A	0.8413	0.4775	0.7242	0.035*
H9B	0.7618	0.4306	0.6356	0.035*
Н9С	0.7763	0.3617	0.7238	0.035*
C10	0.3352 (3)	0.6414 (3)	0.7521 (2)	0.0197 (8)
C11	0.3826 (3)	0.5350 (3)	0.7982 (3)	0.0236 (8)
H11	0.4201	0.4865	0.7778	0.028*
C12	0.3746 (3)	0.5011 (4)	0.8736 (3)	0.0325 (10)
H12	0.4075	0.4300	0.9052	0.039*
C13	0.3190 (3)	0.5697 (4)	0.9031 (3)	0.0342 (10)
H13	0.3130	0.5445	0.9542	0.041*
C14	0.2719 (3)	0.6755 (4)	0.8584 (3)	0.0299 (9)
H14	0.2345	0.7233	0.8793	0.036*
C15	0.2798 (3)	0.7105 (4)	0.7838 (3)	0.0242 (8)
H15	0.2473	0.7825	0.7532	0.029*
C16	0.3967 (2)	0.8436 (3)	0.6713 (2)	0.0187 (7)
C17	0.4240 (2)	0.8905 (4)	0.6092 (2)	0.0208 (8)
H17	0 4146	0.8416	0 5596	0.025*
C18	0.4653 (3)	1.0087 (4)	0.6187 (3)	0.0229 (8)
H18	0.4827	1.0410	0.5753	0.028*
C19	0.4808 (3)	1.0785 (4)	0.6917 (3)	0.0253 (8)
H19	0.5093	1.1588	0.6988	0.030*
C20	0.4549 (3)	1.0321 (4)	0.7544 (3)	0.0249 (9)
H20	0.4655	1.0810	0.8043	0.030*
C21	0.4132 (2)	0.9143 (4)	0.7454 (2)	0.0205 (8)
				=(0)

H21	0.3963	0.8824	0.7892	0.025*
C22	0.2247 (2)	0.7088 (3)	0.5762 (2)	0.0186 (7)
C23	0.1512 (3)	0.6499 (4)	0.5882 (3)	0.0219 (8)
H23	0.1636	0.5983	0.6373	0.026*
C24	0.0605 (3)	0.6665 (4)	0.5290 (3)	0.0255 (9)
H24	0.0110	0.6277	0.5380	0.031*
C25	0.0422 (3)	0.7399 (4)	0.4563 (3)	0.0250 (9)
H25	-0.0199	0.7524	0.4159	0.030*
C26	0.1149 (3)	0.7950 (4)	0.4429 (3)	0.0279 (9)
H26	0.1023	0.8435	0.3924	0.033*
C27	0.2057 (3)	0.7801 (4)	0.5021 (2)	0.0218 (8)
H27	0.2549	0.8185	0.4922	0.026*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0167 (3)	0.0092 (3)	0.0194 (3)	-0.00037 (16)	0.0050 (2)	-0.00177 (17)
Cl1	0.0221 (4)	0.0127 (4)	0.0235 (5)	0.0019 (3)	0.0060 (4)	0.0012 (3)
S1	0.0185 (4)	0.0130 (4)	0.0248 (5)	-0.0006 (3)	0.0051 (4)	-0.0051 (4)
P1	0.0178 (4)	0.0110 (4)	0.0183 (5)	-0.0007 (3)	0.0058 (4)	-0.0012 (4)
01	0.0177 (12)	0.0122 (13)	0.0250 (14)	-0.0008 (10)	0.0054 (11)	-0.0056 (10)
O2	0.0198 (13)	0.0210 (15)	0.0362 (17)	-0.0019 (11)	0.0080 (12)	-0.0132 (13)
N1	0.0157 (14)	0.0116 (14)	0.0200 (16)	-0.0006 (11)	0.0034 (12)	0.0024 (12)
N2	0.0172 (15)	0.0120 (15)	0.0227 (17)	0.0010 (12)	0.0049 (13)	-0.0024 (13)
N3	0.0180 (15)	0.0152 (16)	0.0213 (17)	-0.0026 (12)	0.0041 (13)	0.0000 (13)
C1	0.0243 (18)	0.0105 (17)	0.0180 (18)	-0.0020 (14)	0.0057 (15)	0.0001 (14)
C2	0.0174 (17)	0.0165 (18)	0.0221 (19)	-0.0011 (14)	0.0058 (15)	-0.0016 (15)
C3	0.0205 (17)	0.0198 (19)	0.023 (2)	-0.0044 (15)	0.0041 (15)	-0.0044 (16)
C4	0.029 (2)	0.0123 (18)	0.024 (2)	-0.0029 (15)	0.0067 (16)	-0.0063 (15)
C5	0.0253 (19)	0.0107 (17)	0.024 (2)	0.0030 (14)	0.0070 (16)	-0.0024 (15)
C6	0.0205 (17)	0.0145 (18)	0.0170 (18)	-0.0014 (13)	0.0063 (15)	-0.0001 (14)
C7	0.0236 (18)	0.0126 (17)	0.0176 (19)	0.0026 (14)	0.0058 (15)	0.0006 (14)
C8	0.0203 (17)	0.0131 (17)	0.0186 (18)	0.0006 (14)	0.0057 (15)	0.0047 (14)
C9	0.0187 (18)	0.0173 (19)	0.030 (2)	0.0020 (14)	0.0070 (16)	-0.0015 (16)
C10	0.0255 (18)	0.0146 (18)	0.0196 (19)	-0.0047 (14)	0.0098 (16)	-0.0039 (15)
C11	0.031 (2)	0.0152 (19)	0.023 (2)	-0.0004 (15)	0.0088 (17)	-0.0022 (15)
C12	0.046 (3)	0.019 (2)	0.031 (2)	-0.0069 (19)	0.014 (2)	0.0020 (18)
C13	0.052 (3)	0.028 (2)	0.027 (2)	-0.016 (2)	0.021 (2)	-0.0039 (19)
C14	0.037 (2)	0.030 (2)	0.027 (2)	-0.0101 (18)	0.0175 (19)	-0.0093 (18)
C15	0.0259 (19)	0.019 (2)	0.027 (2)	-0.0037 (15)	0.0105 (17)	-0.0042 (16)
C16	0.0175 (17)	0.0104 (17)	0.024 (2)	0.0028 (13)	0.0037 (15)	0.0021 (14)
C17	0.0222 (18)	0.0151 (19)	0.023 (2)	-0.0037 (14)	0.0070 (16)	-0.0021 (15)
C18	0.0255 (19)	0.0163 (19)	0.026 (2)	-0.0020 (15)	0.0091 (16)	0.0058 (16)
C19	0.0246 (19)	0.0144 (18)	0.033 (2)	-0.0032 (15)	0.0083 (17)	-0.0002 (17)
C20	0.027 (2)	0.018 (2)	0.027 (2)	-0.0009 (15)	0.0078 (17)	-0.0056 (16)
C21	0.0233 (18)	0.0164 (18)	0.022 (2)	-0.0010 (14)	0.0088 (15)	-0.0021 (15)
C22	0.0183 (17)	0.0152 (18)	0.0187 (19)	0.0013 (14)	0.0039 (14)	-0.0060 (14)
C23	0.0232 (18)	0.0143 (18)	0.028 (2)	0.0011 (14)	0.0107 (16)	-0.0017 (16)

C24	0.0212 (19)	0.022 (2)	0.033 (2)	-0.0039 (15)	0.0106 (17)	-0.0085 (17)
C25	0.0175 (17)	0.025 (2)	0.025 (2)	0.0038 (15)	0.0007 (15)	-0.0066 (17)
C26	0.030 (2)	0.022 (2)	0.024 (2)	0.0044 (16)	0.0042 (17)	0.0000 (17)
C27	0.0228 (18)	0.021 (2)	0.020 (2)	0.0019 (15)	0.0077 (15)	0.0003 (15)
C	(8.0)					
Geometric paran	neters (A, ⁵)					
Ni1—N1		1.895 (3)	С	10—C15	1.40	06 (5)
Ni1—O1		1.849 (2)	С	11—C12	1.3	85 (6)
Ni1—P1		2.216 (1)	С	11—H11	0.93	500
Ni1—S1		2.150 (1)	С	12—C13	1.3	82 (7)
S1—C8		1.738 (4)	С	12—H12	0.93	500
P1-C10		1.813 (4)	С	13—C14	1.3	91 (7)
P1—C22		1.826 (4)	С	13—H13	0.93	500
P1—C16		1.830 (4)	С	14—C15	1.3	76 (6)
01—C1		1.324 (4)	С	14—H14	0.9	500
O2—C2		1.386 (4)	С	15—H15	0.9	500
O2—H2O		0.84 (5)	С	16—C17	1.3	85 (5)
N1—C7		1.299 (5)	С	16—C21	1.3	97 (5)
N1—N2		1.396 (4)	С	17—C18	1.3	94 (5)
N2—C8		1.341 (5)	С	17—H17	0.9	500
N2—H2N		0.86 (4)	С	18—C19	1.3	80 (6)
N3—C8		1.311 (5)	С	18—H18	0.93	500
N3—C9		1.468 (5)	С	19—C20	1.3	78 (6)
N3—H3N		0.86 (4)	С	19—H19	0.9	500
C1—C6		1.401 (5)	С	20—C21	1.3	93 (5)
C1—C2		1.415 (5)	С	20—H20	0.9	500
C2—C3		1.369 (5)	С	21—H21	0.93	500
C3—C4		1.405 (5)	С	22—C27	1.3	95 (5)
C3—H3		0.9500	C	22—C23	1.40	05 (5)
C4—C5		1.377 (5)	C	23—C24	1.3	86 (5)
C4—H4		0.9500	C	23—H23	0.93	500
C5—C6		1.434 (5)	C	24—C25	1.3	89 (6) 500
C5—H5		0.9500	C	24—H24	0.93	500
C6—C7		1.422 (5)	C	25—C26	1.3	87 (6) 500
С/—Н/		0.9500	C	25—H25	0.93	500
C9—H9A		0.9800	C	26—C27	1.3	85 (5) 500
С9—П9Б		0.9800	C	20—H20	0.9.	500
С9—п9С		0.9800	C	2/— <u><u>Π</u>2/</u>	0.9.	300
		1.400 (3)	0	11 010 015	110	
OI—NII—NI		94.19 (12)	C	11—C10—C15	118	.6 (4)
OI—NII—SI		1/6.80 (9)	C	11—C10—P1	120	0.4 (3)
NI—NII—SI		88.09 (9)	C	15—C10—P1	121	.0 (3)
UI-NII-PI		δ/.10 (δ) 175.92 (10)	C	12 - C11 - C10	119	.9 (4) . 1
$\frac{1}{1} \frac{1}{1} \frac{1}$		1/5.85(10)	C	12 - C11 - H11	120	V. I N 1
SI = NII = PI		90.78 (4) 08 04 (12)		10 - C11 - H11	120	y.1
$C_0 \longrightarrow D_1 \longrightarrow D_2$		90.04 (13) 104.20 (17)		13 - 012 - 011	120	
C10 - P1 - C22		104.30(17)		13 - 012 - 012	119	7.7
C10-r1-C10		100.00 (18)	C	п—С12—П12	119	. /

C22—P1—C16	105.45 (17)	C12—C13—C14	120.3 (4)
C10—P1—Ni1	112.48 (13)	C12—C13—H13	119.8
C22—P1—Ni1	112.74 (12)	C14—C13—H13	119.8
C16—P1—Ni1	114.42 (12)	C15—C14—C13	119.6 (4)
C1—O1—Ni1	126.5 (2)	C15—C14—H14	120.2
С2—О2—Н2О	104 (4)	C13—C14—H14	120.2
C7—N1—N2	114.7 (3)	C14—C15—C10	121.0 (4)
C7—N1—Ni1	127.0 (3)	C14—C15—H15	119.5
N2—N1—Ni1	118.3 (2)	C10-C15-H15	119.5
C8—N2—N1	117.3 (3)	C17—C16—C21	119.4 (3)
C8—N2—H2N	125 (4)	C17—C16—P1	117.2 (3)
N1—N2—H2N	114 (4)	C21—C16—P1	123.3 (3)
C8—N3—C9	124.6 (3)	C16—C17—C18	120.8 (4)
C8—N3—H3N	121 (3)	С16—С17—Н17	119.6
C9—N3—H3N	112 (3)	C18—C17—H17	119.6
O1—C1—C6	126.1 (3)	C19—C18—C17	119.4 (4)
O1—C1—C2	115.8 (3)	C19—C18—H18	120.3
C6—C1—C2	118.1 (3)	C17—C18—H18	120.3
C3—C2—O2	120.0 (3)	C20-C19-C18	120.3 (4)
C3—C2—C1	122.1 (3)	С20—С19—Н19	119.9
O2—C2—C1	118.0 (3)	C18—C19—H19	119.9
C2—C3—C4	119.6 (3)	C19—C20—C21	120.7 (4)
С2—С3—Н3	120.2	С19—С20—Н20	119.6
С4—С3—Н3	120.2	C21—C20—H20	119.6
C5—C4—C3	120.5 (3)	C20-C21-C16	119.3 (4)
С5—С4—Н4	119.7	C20—C21—H21	120.3
С3—С4—Н4	119.7	C16—C21—H21	120.3
C4—C5—C6	119.8 (3)	C27—C22—C23	119.1 (3)
С4—С5—Н5	120.1	C27—C22—P1	119.8 (3)
С6—С5—Н5	120.1	C23—C22—P1	121.0 (3)
C1—C6—C7	121.4 (3)	C24—C23—C22	120.5 (4)
C1—C6—C5	119.8 (3)	С24—С23—Н23	119.8
C7—C6—C5	118.8 (3)	С22—С23—Н23	119.8
N1—C7—C6	124.8 (3)	C23—C24—C25	119.9 (4)
N1—C7—H7	117.6	C23—C24—H24	120.0
С6—С7—Н7	117.6	C25—C24—H24	120.0
N3—C8—N2	120.7 (3)	C26—C25—C24	119.7 (3)
N3—C8—S1	121.0 (3)	C26—C25—H25	120.1
N2—C8—S1	118.2 (3)	С24—С25—Н25	120.1
N3—C9—H9A	109.5	C27—C26—C25	120.8 (4)
N3—C9—H9B	109.5	C27—C26—H26	119.6
Н9А—С9—Н9В	109.5	C25—C26—H26	119.6
N3—C9—H9C	109.5	C26—C27—C22	119.9 (4)
Н9А—С9—Н9С	109.5	С26—С27—Н27	120.0
Н9В—С9—Н9С	109.5	С22—С27—Н27	120.0
N1—Ni1—S1—C8	-1.59 (15)	C22—P1—C10—C11	130.3 (3)
P1—Ni1—S1—C8	174.39 (13)	C16—P1—C10—C11	-118.5 (3)
O1—Ni1—P1—C10	95.87 (15)	Ni1—P1—C10—C11	7.8 (3)
S1—Ni1—P1—C10	-86.52 (13)	C22—P1—C10—C15	-49.1 (3)

O1—Ni1—P1—C22	-21.73 (16)	C16—P1—C10—C15	62.2 (3)
S1—Ni1—P1—C22	155.87 (14)	Ni1—P1—C10—C15	-171.6 (3)
O1—Ni1—P1—C16	-142.22 (16)	C15-C10-C11-C12	-0.5 (6)
S1—Ni1—P1—C16	35.38 (14)	P1-C10-C11-C12	-179.8 (3)
N1—Ni1—O1—C1	2.5 (3)	C10-C11-C12-C13	1.1 (6)
P1—Ni1—O1—C1	-173.5 (3)	C11-C12-C13-C14	-1.4 (7)
O1—Ni1—N1—C7	-1.3 (3)	C12—C13—C14—C15	1.0 (6)
S1—Ni1—N1—C7	-179.0 (3)	C13-C14-C15-C10	-0.3 (6)
O1—Ni1—N1—N2	178.6 (3)	C11-C10-C15-C14	0.1 (6)
S1—Ni1—N1—N2	0.8 (2)	P1-C10-C15-C14	179.4 (3)
C7—N1—N2—C8	-179.4 (3)	C10—P1—C16—C17	170.3 (3)
Ni1—N1—N2—C8	0.7 (4)	C22—P1—C16—C17	-79.2 (3)
Ni1—O1—C1—C6	-2.1 (5)	Ni1—P1—C16—C17	45.3 (3)
Ni1—O1—C1—C2	178.1 (3)	C10-P1-C16-C21	-6.8 (4)
O1—C1—C2—C3	-178.3 (4)	C22—P1—C16—C21	103.7 (3)
C6—C1—C2—C3	2.0 (6)	Ni1—P1—C16—C21	-131.9 (3)
O1—C1—C2—O2	1.3 (5)	C21—C16—C17—C18	-1.9 (5)
C6—C1—C2—O2	-178.5 (3)	P1-C16-C17-C18	-179.2 (3)
O2—C2—C3—C4	179.2 (4)	C16-C17-C18-C19	1.4 (6)
C1—C2—C3—C4	-1.2 (6)	C17-C18-C19-C20	-0.5 (6)
C2—C3—C4—C5	-0.7 (6)	C18-C19-C20-C21	0.3 (6)
C3—C4—C5—C6	1.8 (6)	C19—C20—C21—C16	-0.8 (6)
O1—C1—C6—C7	-0.4 (6)	C17—C16—C21—C20	1.6 (5)
C2—C1—C6—C7	179.3 (3)	P1-C16-C21-C20	178.7 (3)
O1—C1—C6—C5	179.4 (3)	C10—P1—C22—C27	160.2 (3)
C2—C1—C6—C5	-0.9 (5)	C16—P1—C22—C27	48.1 (3)
C4—C5—C6—C1	-0.9 (6)	Ni1—P1—C22—C27	-77.4 (3)
C4—C5—C6—C7	178.8 (4)	C10—P1—C22—C23	-23.0 (3)
N2—N1—C7—C6	179.6 (3)	C16—P1—C22—C23	-135.1 (3)
Ni1—N1—C7—C6	-0.6 (5)	Ni1—P1—C22—C23	99.4 (3)
C1C6C7N1	1.8 (6)	C27—C22—C23—C24	-2.6 (5)
C5—C6—C7—N1	-178.0 (3)	P1—C22—C23—C24	-179.4 (3)
C9—N3—C8—N2	-1.2 (6)	C22—C23—C24—C25	1.2 (6)
C9—N3—C8—S1	-178.9 (3)	C23—C24—C25—C26	0.8 (6)
N1—N2—C8—N3	179.9 (3)	C24—C25—C26—C27	-1.5 (6)
N1—N2—C8—S1	-2.3 (4)	C25—C26—C27—C22	0.1 (6)
Ni1—S1—C8—N3	-179.7 (3)	C23—C22—C27—C26	1.9 (6)
Ni1—S1—C8—N2	2.5 (3)	P1-C22-C27-C26	178.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2O…O1	0.84 (5)	2.10 (4)	2.640 (4)	122 (4)
N2—H2N···Cl1	0.86 (4)	2.19 (4)	3.046 (3)	172 (5)
N3—H3N····Cl1 ⁱ	0.86 (4)	2.28 (4)	3.111 (3)	164 (5)
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z+3/2$.				

Fig. 2